Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2321162121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446853

RESUMO

According to Dollo's Law of irreversibility in evolution, a lost structure is usually considered to be unable to reappear in evolution due to the accumulation over time of mutations in the genes required for its formation. Cypriniform fish are a classic model of evolutionary loss because, while they form fully operational teeth in the ventral posterior pharynx, unlike other teleosts, they do not possess oral teeth. Paleontological data show that Cypriniforms, a clade of teleost fish that includes the zebrafish, lost their oral teeth 50 to 100 Mya. In order to attempt to reverse oral tooth loss in zebrafish, we block the degradation of endogenous levels of retinoic acid (RA) using a specific inhibitor of the Cyp26 RA degrading enzymes. We demonstrate the inhibition of endogenous RA degradation is sufficient to restore oral tooth induction as marked by the re-appearance of expression of early dental mesenchyme and epithelium genes such as dlx2b and sp7 in the oral cavity. Furthermore, we show that these exogenously induced oral tooth germs are able to be at least partly calcified. Taken together, our data show that modifications of signaling pathways can have a significant effect on the reemergence of once-lost structures leading to experimentally induced reversibility of evolutionary tooth loss in cypriniforms.


Assuntos
Perciformes , Perda de Dente , Animais , Peixe-Zebra , Odontogênese
2.
iScience ; 26(7): 107063, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534154

RESUMO

Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and ß-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...